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F o r  an infinitely long plate strip of constant curv- 
ature there is set up the buckling condition for combined 
shear and axial stresses, Assumptions are made of the 
vanishing of the moments acting on the longitudinal edge! 
and of the vanishing of the tangential displacements u 
and the transverse stresses oy (longitudinal stiffeners 
nonresistant to bending in the circumferential direction), 
The ’buckling condition is evaluated for the case of pure 
shear and an approximate formula is derived for the criti- 
cal stresses for large curvatures. In connection with 
the discussion of the methods and results there is de- 
fined- the range of validity of the buckling condition set 
UP * 

I. IRTRODUDTIQN AND STATPEEENT OF THE PROBLBM 

The stressed skin covering of fuselages and wings” 
is sectioned off by longitudirxal stiffeners into panels 
of small curvature by these panels constituting curved 
plate strips, If a membrane type stress condition is 
produced in these structural parts the equilibrium con- 
figuration reaches the limit of stability at a definite 
load. Since each plato strip represents only a small 
portion of the stresscd-skin structure the state of stress 
may be assumed as homogeneous before buckling sets in and 
there then arises the important problem of determining 
the critical loading limit for shear or compressive 
stress or for the t w o  combined, 

The stability problems of a curved platestrip may be 

*“Die Stabilitdtsgrenze einee gekrrimmten Plattenstroifens 
bei Beanspruchung durch Schub- und L&ngskrHfte,n Luft- 
fahrtforschung, vol, 15, no. lO/ll, Oct. 10, 1938, pp,  
517-26, 
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classified both as to the type of loading and the end 
-conditions. Since the resistance to buckling of the lon- 
gitudinal stiffeners is considerably higher than that of 
the plate, a rigid support in the radial direction must 
be assumed at the edges (with the limiting cases of  sim- 
ple (no moment) or clamped support). The tangential dis* 
placements, on account o f  the large extensional stiffness 
of the stiffeners as well as the radial displacements are 
to be set equal to zero at the edges. F o r  the tangent t o  
the plate at right angles to the edge, the following lira- 
iting conditions are  possible: The vanishing of the nor- 
mal displacements (flexurally rigid edge stiffeners) o r  
tiic vanishing of the normal stresses (edge stiffeners 
without flexural resistance in the plate surface). 

A number of the problems here discussed have 
previously been treated, The critical stress in the case 
o f  compressive stresses has been  determined by 8 .  Timo- 
shonko (reference 1) for an icfinitely long plate strip 
with constant curvature under tho assumption o f  simply 
supported longitudinal adges . Legget t (reference 2) has 
investigated the critical shear stress of a plate s t r i p  
of small curvature for simply supported and clamped (flex- 
urally stiff) edges, His numerical evaluation of the 
buckling condition set up is valid, however, f o r  only 
plates with vsry small curvature. In view o f  airplane 
construction requirements, however, his computations must 
b e  extended to larger curvatures. 

In the present investigation the buckling Condition 
is set up for an infinitely long plate strip of constant 
curvature for the case of monent-free support at edges 
for combined shear and axial loading. The buckling con- 
dition is evaluated for the case of pure shear stress and 
for larger curvatures an approximate formula is derived. 
Thc: evaluation of the buckling condition for the general 
case of combined shear and axial stresses will shortly be 
published. In contrast t o  what was dono by Leggott we 
shall start with the complsto fundamontal equations for 
the displacements, With the aid of an expression by Ritz 
for the buckling functions tho factors neglected by 
Leggett.wil1 then be justified for a certain range of 
plate dimensions. 
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-. I I , GEIEJ3ERAL P.R.INGIPY;E$ . 

Let there be given an infinitely long plate strip of 
width b ,  thickness 6, and constant radius of curva- 
ture r (fig. .I). The x-,i,y, z coordinates are  taken re- 
spectivelg in the directSons of the generators, along the 
circumference and along tho radius, the x axis coinciding 
with one of the edges of the strip, Corrosponding to the 
coordinates are the displacements u, v ,  w, of the middle 
surr"ace,which carry the plate from the initial equilibrium 
condition to the neighborinG condition on reaching the 
limit o f  stability. To produce these displacements an 
amount of work Ai in deforming tho plate (potential of 
internal forces) and an amount of work A a  against the 
oxtornal forces is required, DcnoBing the negative prod- 
uct of tho axtornal forces by the displacements of their 
points of application by V = -A, the change in the total. 
potential energy due to the virtual displacements u, v ,  
w, is equal to 

The linear components of the displacements n, v ,  T, in 
6 fI must vanish since in the initial state tho plate 
strip was in eguilfbrium. Belovr the stability limit the 
square components Q of S IT ard positive (minimum of 
potential. energy in the stable equilibrium state), At 
the stability limit at least one set of u, v ,  PI must be 
possible f o r  which the square components Q vanish but 
none for which they are negative. From this minimum prop- 
erty it follows that for all admissible variations it is 
necessary that 

6 Q = O  

(See reference 3.) 

To set up the expression for the deformation work it 
is necessary to find the relation between the plate de- 
formation and the values of the displacements. The work 
%one in deforming the plate is made up of the work &one 
by the basic stresses, uniformly distributed over the 
plate thickness, in deforming the plate middle surface 
and in the deformation w o r k  of the additional buckling 
stresses. In the first portion the deformation magnitudes 
enter linearly while in the second they enter squared, 
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S i n c e  t h e  e x p r e s s i o n  f o r  t h e  s t r a i n  ene rgy  must a l s o  con- 
t a i n  t h e  s q u a r e  t e r n s  i n  t h e  d i s p l a c e m e n t s  u, v ,  w ,  t h e  
squa.res o f  t h e  d i s p l a c e m e n t s  must b e  t a k e n  i n t o  accoun t  
i n  t h e  d e f o r m a t i o n s  of t h e  p l a t e  middle  s u r f a c e .  

Let  t , ,  t , ,  t ,  be t h e  u n i t  v e c t o r s  i n  t h e  d i r e c -  
t i o n  o f  t h e  g e n e r a t o r s ,  t h e  c i r cumfe rence ,  and  t h e  r a d i u s ,  
r e s p e c t i v e l y ,  a t  any  p o i n t  o f  t h e  middle  s u r f a c e  of t h e  
p l a t e  ( f i g .  2). The d i sp lacemen t  v w i l l  h e r e  be assumed 
a l o n g  t h e  t a n g e n t  and  n o t  a l o n g  the  c i r cumfe rence .  L e t  
t h e  p o s i t i o n  v e c t o r  of t h e  midd le  s u r f a c e  o f  t h e  p l a t e  
b e f o r e  t h e  de fo rma t ion  be = go. The s q u a r e  o f  t h e  
l e n g t h  of t h e  l i n e  element  b e f o r e  t h e  de fo rma t ion  i s  t h e n  

a so2 = a x  +- a %iy)2 = ( t 1 d x  + c a l y ) 2  = ax2 + d y 2  
a s  

A f t e r  t h e  d e f o r m a t i o n  

a i l  ) t 2  + (wy - E ) * ,  I_. = Ey = uy t ,  + (1 + vy + - r a Y  r 

For t h e  changes i n  t h e  c o e f f i c i e n t s  of t h e  s q u a r e  o f  t h e  
l i n e a r  elefnent of t h e  middle  s u r f a c e  o f  t h e  p l a t e  we t h e n  
have 
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‘Y - = 2(vy + I) + uya +(vy + +(wy - y> .1, 
22 r r r [(3*1-d 

The geometrical significance of these deformation magni- 
tudes is obtained from their relations with the cxten- 
sional and angular strains of the surface. We have (ref- 
erence 4) 

1 
(4 *1-3 ) 

- 
- & 

= 2-- Y sin Yxy = 

In the lineam portions the magnitude Y,, is equal to 
Yxy; the values Y l l  and Y z 2  differ from the corre- 
sponding strains c X  and cy by the factor 2, 

middle surface there are ob;tained under the usual aasump- 
tions of plate bending theory the following relations 

- 
-.. - 

For the deformations at the distance z froln the 

E X  = ux - 2 wxx 
W r 

V Y  €y = vy  + - - z - 
r + z  r + z  

(The detailed derivation of these and the following rela- 
tions are found in reference 5.) Since these magnitudes 
enter only into the strain energy of the addifional(buck- 
ling) stresses only the linear portions need be taken in- 
to account. By Hookets law the additional stresses in 
the plate after buckling are found to be 
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I '  

These equations, integrated over the plate thickness, tak- 
ing account o f  the trapezoidal form of the plate element 
in t h e  cross section, give the following resultant forces 
and moments ( f i g .  3 )  

K ux I- u v y  + u"- r - r w x x  

r2 

(uy + V X )  + r 2  XY 
1 - v  
2 

- Nxy - D - 

Nyx = i) 1 - u  K l -  
2 r 2  r 

r r 

@lY = K ( u  mxx + wyy 

Idxy = K (1 - U )  (wXy - ">.. r 

Idyx = X (1 - V )  (wxy + uY - - -- 
. .  

- ,  2 r  2 r  

.---(., 1 
1- 8 

E S  
1 - Y2 where D = -- is the axial rigidity of the plate and 

E s 3  
K = -  the flexural rigidity. 

12(1 - v") 
The deformation work of the additional stresses per unit 

n r o a  of the middle surface i$ 
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Substituting equations (6) there is obtained 

F o r  the infinitely long plate strip the displacements 
must b e  periodic along the longitudinal direction. We 
shall denote the half-wave length by 1 .  For the strain 
energy of the additional stresses over the plate width b 
and a complete wave length 2 1  there follows from (8a): 

- 2(1 - v )  ( E x p y  - YXY )] (1 +:)dxdyde (9) 

The basic (original) stresses are made up of the membrane 
shear forces 7 s  and the longitudinal forces CT s, where 
positive values of 0 denote tensile stresses. Since the 
moment of the additional stresses about the normal to the 
plate 

r@,y - Nyxl f xyx 

vanishes identically, as can bet readily seen by substitut- 
ing the deformation values from equations (7), the momenta 
of the basic stresses at the deformed element nust be also 
in equilibrium. (See ceference 5, p .  200.) For the shear 
forces on the deformed shell element, we must therefore 
substitute ~ s ( 1  I- h,)dy and ~ s ( 1  + >,)ax. For the 
longitudinal forces, the assumption may be made that they 
act along the direction of the edges. The strain energy 
of the basic shear forces per unit area of surface (see 
fig. 4) is obtained as 
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Vith the aid of the third of equations (4) there is ob- 
tained 

- 
a2 = T S  Y12 (loa) 

The strain energy of the longitudinal forces per unit 
area is obtained as 

- 
a3 = 0 s  c X  

Integrating over the plate width and a wave length, there 
is obtained from equations (loa) and (11) for the strain 
e n e r g y  o f  the basic stresses 

The potential of  the external forces is 

As may be easily seen from equations (12) and (13) the 
linear strain terms in the sum cancel each other (condi- 
'ti'on of equilibrium). In the change in potential energy 

6 I7 = Ai + V = A 1 + A 2  + A ,  + V 

there remain only the quadratic portions Q. By substi- 
tuting the displacements (5) in equation ( 9 ) ,  there is 
obtained 
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a t  b 0 0  

0 0  

- 2 (Ux + vy 4- E)*  - 2(1 - v) [(w,, "yy - wxga) r 

-2 2 p 

Por simply supported longitudinal edges w = 0 and - 0 at p = 0 and y = b. Furthermore, the tan- 
gential displacement u must also vanieh at these edges. 
Making use of these end conditions and the periodicity 
of the displacements along the longitudinal direction 
and integrating fn the first term o f  the sum partially 
with respect t o  x and the second term partially with re- 
spect to y, it is readily seen that the portions 

wYY - 

do not contribute to the strain energy, Prom the minimum 
condition 6Q = 0 we then have 

8 
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2 2  b 

1 + y v x y  + u- wX - - D 6 Q* = J'Ji [uxx + YY r 
0 0  

1 - v  - r wxxx + --- uYY XY Y 2 
+ k ( r u  w 

2 

4- 2 qlux,] 6 u dx  dy = 0 ( 1 5 4  

Y W 
+ U x y f r  1 - v  
2 

- I% 6 Qv = 1.J [vyy + vxx + 
D 2 

0 0  

2 1  b 

a t  'b 

0 0  

where 

and 
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Since the equations (15) thus set up must vanish for 
each variation Su, Sv, and Cgw, the expressions in 
bp.acket.s under the integral signs are to b e  set equal t o  
zero. This leads to three linear differential equations 
for the displacements u, v ,  w, whicb equations may also 
be derived from a consideration of the stability of a 
shell element. For longitudinal members that are flexur- 
ally yielding in the circumferential airection 6v is 
not equal t o  zero at y = 0 and y = b and from the 
boundary integral of equation (1!j2), there is then ob- 
tained as the boundary condition for the displacement at 
y = 0 and y = b. 

vy -t q,v, = 0 

Considering Bquation (7-2), it may be seen that the 
normal stress and the component of the shear force in the 
circumferential dirsction at the deformed edges y = 0 
and y = b must be in equilibrium. The complete boundary 
conditions at y = 0 and y = b are therefore 

In an exact determination o f  the crit.ica1 stresses, 
the Solutions of the differential equations in (15) must 
be substituted in the boundary conditions (16). There are 
then obtained eight homogeneous equations (four at each 
edge) for u, v ,  and w.  The problem is .then to find the 
snallest value o f  q 1  for given q2 (or conversefy) for 
wnich a nonidentically vanishing solution for 'the dis- 
placements is p o s s i b l e .  The differential equations may 
be solved by assuming for the displacements the expres- 
sions 

m = c cos .L ( A X  - m y)  
r 
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The continuation of the method leads, however, to campu- 
tational difficulties which, like thoso met in the case 
of a twisted unstiffened circular cylindrical shell of fi- 
nite length (referen5e 5, p. 203), exceed reasonable 
bounds, Tne computation will here be carried out with the 
aid of a Ritz expression in the form already employed by 
Leggett for the strip of small curvature and by HI. Seydel 
for the flat strip (reference 6 ) .  

111. SETTING U? OF TXE B'JCKLIXG CORDITIOX 

flVITE THE AID OF A RITZ SUBSTITUTION 

The Ritz aethod consists in approximating the dis- 
placements by using a combination of partial expressions 
in which undetermined values enter linearly, each expres- 
sion satisfying tfie boundary conditions, The values are 
then s o  determined that the approximating expression, sub- 
stituted in equation (14), reduces ths latter to a mini- 
mum. The calculus of variations problem then goes over 
into an ordinary minimum problem. If the minimum condi- 
tions for the quadratic terms in the change of potential 
energy are set up before the integration (method of 
Galerkin, reference 7 )  there is obtained again the system 
of equations (15) where, for example, there is to be sub- 

8 A, where Am are the undeter- stituted 6 u =  C --- 
m a Am 

ail 

inined values entering in the expression for u. Since 
only known functions now stand in the integrands, the  in- 
tegration can be performed and on the left-hand sides 
of the equations, there are then obtained polynomials in 
the variations 6 A,, etc., the andetermined values them- 
selves occurring in the coefficients-. Since the equations 
nust be satisfied for each system of values 6 Am, the 
coefficients must vanish separately and this leads to a 
systeu of equations for computing the undetermined values, 
This system of equ-ations will have a solution for the 
disylacements other than zero only if the determinant of 
its coefficients vanishes. There is thus obtained the re- 
quired condition for the reaching of the stability limit. 

The oblique buckling waves that are obtained in the 
presence of shear are represented in the expressions for 
the displacements by two partial waves for each displace- 
ment shifted in phase by a half-wave length in the longi- 
tudinal direction: 
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7 T x  u = cos - C A,, sir1 -- 
1 m  b 

n x  m n Y  I - sin -r 5 A,, sin -- 
I b 

1 

In 7T y w = sin 2 2  c c lm sin 
1111 b 

with m = 1, 2, 3 . . .  . The boundary conditions (16.1-3) 
are exactly satisfied by the chosen expressions, while 
boundary condition (1fjs4) is satisfied except for the term 
qJvx. As may be seen from equation (17.,) the derivatives 
o L  v with respect to x and y for the range (0 < y <: 
b) are of the same order o f  magnitude. Since q1 - 
7 (I - I.?")<< 1, it follows that an exact satisfying of E 
the boundary condition (16.*) would require in the expres- 
sion chosen for v only a slight correction mhich is dis- 
p e n s e d ,  with here. 

- 

As will be shown 'below, in the first partial waves we 
require only the even terms in rn and in the second only 
the odd terms ( o r  conversely). The nllinber of terms taken 
gives the degree of the approximation for tho buckling 
functions and for the critical stresses. As the computa- 
tion f o r  the case of pure shear shows, the series of ap- 
proximations for the critical stresses converges very rap- 
idly. The summation for the partial waves in the trans- 
verse direction of the plate strip needs to be extended 
only to rn = 4. 

The functions thus chosen for the displacements u, 
v ,  w are now substituted in equations (X5.1-3). Since 
the boundary condition (equation 16.4) is not exactly sat- 
isfied, the boundary integral in equation (15.,) will 
yield a emall. contribution. Making use of 
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j s i n y c o s z d y  b 
0 

fur n & m ungerade 

fur n f m gerade 

J s i n 3 s i n 3 d y =  b b s ” b  ~ s % c o s ~ y d y  b 
0 0 

0 fur n + m  =( b - fur n = m  2 

0 
b 

where, f o r  briefners, there haw 
been r e t  

:I UA = pa + I---% (1 + k), 
2 

bn = n a + r - B ”  1 - v  (1 3- 3 k )  + a - B ” r  
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In the summation terms m is to be taken so that 
n f m is an odd number (see equation (18)); ioe,, for n 
even, m must be odd and conversely. The structure of 
the system of equations is shown by the scheme of figure, 
5 which repr,esents the part of equations (2l,,_')kith the 
unknowns GIn, Can. It may be seen that the entire sys- 
tem breaks up into two independent partial systems whose 
coefficients are distinguished by the heavy and light 
dashos. F r o m  equations (21) it is further evident that 
the coefficients of Cln in dquation (21.~) are equal t o  
those Of CSn in equation (21,a) whereas the right upper 
region in figure 5 anq. the lower left region contain equal 
and opposite coefficients. If therefore the unknowns 
ell, C,,..,, Cz2, C,,.., are computed from one partial 
system (light dashes) the solution of the other partial 
system can be found from the relations 

c,, = -%1 - 
c1.2 - c,, 

......... .......... I 

......... .......... J -  
The same holds true for the A's and B J s  since the en- 
tire system (19-21) ia constructed in exactly the same 
manner as the portion shown in figure 5, 

. .  
Substituting the equations (23) and the correspond- 

ing expressions for A and B in (17), it is seen that 
the two partial systems of figure 5 represent the same 
buckling form except for a phase displacement of i/2 8 0  
tha.t it is sufficient to investigate one of them in which 
the sum of the two subscripts of the'unknown is odd. The 
pairs o f  equations (19) (20) and (21) can then each be 
combined into one a s  follows: \ ,  

I .  

. .  

. _ . .  
, . I .  

I .  
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where n and m now run through both even.and odd values. 

F o r  n = 1, 2 ... i and m = 1, 2 ... i (in each 
berm n zfi m is odd), there is obtained from the coeffi- 
cients of the system of equations (24.1-3) a determinant 
symmetric with respect ot its main diagonal, of the 
i s d  order. The required buckling condition is found in 
the following manner. Let us consider the first two sys- 
tems of equations of (24); Por a finite number of terms 
n = 1, 2 ... i the undete.rnined’values A and f3 can 
be expressed in terms of the’C’s by Cramer’s rule. From 
the consideration o f  t he  values an, bn, fn, gn, hn, and 
the summation terms, it may be seon that tho determinant 
of the denominator is of the order of magnitude i!4. and 
similarly the deterninant of the numerator of An. The 
numerator deterninant of Bn, however, is of the order 
of magnitude - i! . By substituting the obtained expres- 
sions in the system of equation (24.,) there is obtained 
a determinant of the coefficients of the ith order, By 

1 4  
n 
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n4r4 dividing through by the term 

terminant may be brought into a normal 'form: 

k - (na + f i g ) *  this'de- 
b4 

. . . *  c21 1 4- e22 23 

'31 e 32 14- = 3 3  . . . .  
. e . .  . .  . . .  0 .  b . . .  

wnere the infinite series 

c l l  4- c 1 2  + c21 + e13 + c.22 + %1 + (26) 

converges absolutely, since n-2  is the highest power of 
n occurring in cap. This, however, ifi a suffi- 
cient condition for the convergence of the determinant 
(25). The latter set equal 'to gero gives the buckling 
condition for the curved plate strip under combined shear 
and axial stresses.. 

In t h e  elimination of A and B i t  is necessary to 
solvg determinants of the 52 order. With certain're- 
strictions for the plate dimensions, which, however are 
within the requirements of airplane construction, the corn- 
putations may be considerably simplified; Iquations 
(24.1-3) are first transformed as follows: 
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where, for briefness, there has been set 
troducing the values 

A = q,@ ;. 8 In- 

4 n2 K ~2 E S a  p* = -- = - 
'c2 s 3 1 - D2 b2 

as reference values for the critical stresses and remem- 

bering that. q1 = - (1 - V 2 ) ,  
the expression 

7 there is obtained for h E 

7 a 7~ s2 
A = -  P-- 

P* 3 b2 

The reference value p* thus introduced is the critical 
compressive stress of a flat plate of width b for sim- 
ply supported longitudinal edges. For the flat plate 
~ / p *  = 1,334 and f3 = 0.793; for a curved plate ~ / p *  
increases with the curvature but the product - p re- 

mains, as further computation will show, approximately 
canstant. Thus A on account of s/b < 1 is also a 
very small magnitude. 

7 

p* 

For the flat plate (r =m) equations ( 2 7 . 1 - a )  sepa- 
rate from equation ( 2 7 . , ) .  It is known that the vanishing 
of the brackets after Cn in equation (27.,) gives t he  
smallest value for A and that An = B n  z 0. Also in the 
case of plates with small curvature it is assumed in a 
first approximation that the h term in the bracket after 
Cn equation (27.3) remains the essential buckling term of 
the system of equations. If the terms in aquntions 
(27',1-2) and the small magnitudes k and q2 are dropped 
then An and B n  may be expressed in terms of Cn from 
these two equations, as follows: 

- - 

> 

from which is obtained: 



With t h e  a i d  o f  t h e s e  f i r s t  approx ima t ions  t h e  r a t io s  be- 
tween the h t e rms  and t h e  p a r t s  a n ,  bn,  e t c , ,  i n  t h e  
c o e f f i c i e n t s  w i l l  b e  s e t  up as a check on the approxima- 
t i o n e  made. If $2 is n e g l e c t e d  compared w i t h  n2 o r  
me and i n  a a d i t i o n  t h e r e  a r e  n e g l e c t e d  ( f o r  r * m) t h e  
small magnitudes k and qa, t h e  r e q u i r e d  r a t io s  are 
found t o  be  t h e  following: 

Eor An i n  ( 2 7 . , )  

1 

F o r  

F o r  

F o r  

For 

Bn i n  (27.8) 

(31.1-5) 

For r - + a  r a t i o  (31.5) w i l l  become i n f i n i t e ,  As shown 
by e q u a t i o n s  (22), however,  t h e  k and q2 t e r n  I n  cn 
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is not to be neglected compared to 1, but converse 
there is obtained in place of (31.j) ' 

where the reference value p* has also been introduced 
in the term with 
of the widtn of the plate. For sufficiently small curva- 

9,. % The ratios (31,1-*) are independent 

tluro /=>1) these ratios are smaller than (31e5) by 4 bZ 4 

the factor n2r2/b2 and in addi'tion srfialler than (32) by 
na or m2 in passing to the flat plate on account of 

T'nGro has thus been confirmed the assumption S2 - 1. 
b" 
made above that the ?$ term after Cn in equation (27.,) 
remains the ossential buckling term also for the case of 
plate strips of snall curvature. The nagnitudes of the 
ratios thus set up are dependant of C,/Cn. For valuos 
of n to which correspond large values of C, (in tho 
prasent case for n = 1 t o  3, as mill bs shown with tho 
aid of examples); i.e., for considerable pqrtions of the 
system of equations the ratio8 '(31.1-4) a r o  srin11 and tho 
first approxinations f o r  A, and B,, according t o  equa- 
tions (29) are sufficiently accurate. $or larger values 
of n, that is, smaller values of. C,, the accuracy 
will decrease but the corresponding buckling terms,. as 
will be shown on evaluating the buckling dsterminaht, are 
of small significance. 

The determinant of the coefficients of (27) must be 
equal to zero for nonvanishing lues of  An, Bn, and Cn, 
If, in the course of the computation, the poworsand products 
o f  k, q2 and of terms with A are neglected and for 
A,/An and B,/Bn their first approximations from (30) 
a r e  substituted, a c  arrive at the following system of 
equations: 
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The convergence of t h e  d e t e r m i n a n t  o f  t h e  c o e f f i c i e n t ' s  i n  
e q u a t i o n s  (33)  may be  e a s i l y  proved  i f  t h e  e q u a t i o n s  are  

d i v i d e d  through by k - (n -I- There i s  then  ob- 

t a i n e d  t h e  normal f o r a  (25) 'with % h e  conye rg ing  s e r i e s  
( 2 6 ) .  The l e f t  s i d e  o f  e q u a t i o n  (33)  i s  q x a c t  except  f o r  
t h e  n e g l e c t e d  p r o d u c t s  and powers of k and qz and has 
t h e  same f o r m  as f o r  a c i r c u l a r ,  c y l i n d r i c a l  s h e l l  unde r  
compr c s s i  on and  w i t h o u t  s t i f f e n e r s .  * 

n 4 r 4  2 

b 4  

* ( S e a  r e f e r e n c e  5 ,  p.  1 9 6 . )  The c i r c u l a r ,  c y l i n d r i c a l  
s h e l l  under  compression d u r i n g  b u c k l i n g  i s  d i v i d e d  up by 
t h e  n o d a l  l i n e s  o f  t h e  buckled f o r m  i n  t h e  x d i r o c t i d n  i n t o  
curved  p l a t e  s t r i p s  w i t h  w = wyy = u = v  = O  a t t h e  
noda l  l i n e s ;  i , e . ,  t h e  sane  "boundary c o n 5 i t i o n s "  which a r e  
c o n s i d e r e d  h e r e .  The e x a c t  computa t ions  o f  W. Fltigge can 
t h e r e f o r e  be used  f o r  t h e  cu rved  p l a t s  s t r i p ,  
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If we neglected the shear 1oadTterms in equations (27) 
with the exception of the important buckling term for small 
curvature strips at Cn in the third equation, there would 
remain on the right side of equations (33 )  only the 1 in 
the braces. Let us denote the other terms as correction 
terns and expand them, since p 2  is a small magnitude, in 
powers of @. We $reak off at the quadratic terms in /3 
and obtain for the braces the following expression 

1 

The above elimination process is sufficiently-accurate 
if the correction terns (34)  a r e  small as compared with 1. 
For a plate strip with a central angle of 4 5 O ,  i.e., with 
b 
nr 4 ’  

with 8 longitudinal stiffeners, the correction terms for 
n = 1 and m = 2 (n k m odd) on neglecting the small 
terms with f3“ amount to about -4 percent, On the left 
side of equation ( 3 3 )  the coefficients of k and q2 
(square brackets) are arranged in powers of b/nr. For 

the portions with b”/.rr4r4 at k are negligibly b 1 
nr 4 
small and the squared portions in b/nr amount to about 
12 percent of (n” -t @” ) *  for n = 1. $or larger values 
of n these terms on both sides of equation (33 )  become 
relatively still smaller. Considering that the extension- 
a1 part of the deformation (1 + Y2)@4 on the left side 
of equation (33 )  and the bending portion with 

k for n = 1 are approximately equal, as will be 

confirmed in the evaluation for the case of pure shear, 
there is found for the term with b2/n2r2 in the co‘effie - 
cient of k only about -6 percent of the no-load terms. 
Hence, for pure shear load (9, = 0) the terms with 
b2/rr2r2, since they are subtracted on bath sides of equa- 

tion ( 3 3 ) ,  may be neglected even for - zz -. 

corresponding t.o a circular, cylindrical shell -= - . I  

- = -  

4 4  

b 4  

b l 
-rrr 4 

In the coefficients of the longitudinal stress q2 
on the left side of equation ( 3 3 )  the squared terms in 

b/vr for b/nr = amount to about 4-6 percent of (n2 ’+ @2)2 
4 
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I b 
-LI 

.-c 

E r r o r  in 
.- 

4 4  
k ne (n2+ $')'a n j3 the f o l l o w i n g  system of e q u a t i o n s :  n 

p e r c e n t  

. (4)* = 0 (35) 7 - -r) C (c, m) - 
P* n2 - m2 

1 . 4  3.2 1 6 8 1 13 25 i 64 I I 

where 

lThe buck l ing '  fo rmulas  wi th  t h e  above n e g l e c t e d  terms f o r  
t h e  c a s e  of pure compression become the f o l l o w i n g .  (See  
r e f e r e n c e  1 . )  

u) - - -  cT - 1 + -  f o r  w s 1 6  
' P* ir 1 6  I 
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The t w o  pararnbters  o f  a c ved p l a t e  s t r i p  b / m  and b / s  
s t i l l  remain only  i n  w and i n  t h e  r e f e r e n c e  magnitude p*. 
Y r o m  t h i s  i t  may be  seen  that  t h e  c r i t i c a l  s t r e s s  i n  t h e  
c a s e  o f  pu re  s h e a r  o r  pu re  compression may each be repre- 
s e n t e d  by a cu rve  f o r  a p l a t e  s t r i p  w i t h  s m a l l  c u r v a t u r e  
and  i n  t h e  case o f  combined s t r e s s  by a s i n g l e  parameter  
f a m i l y  o f  curves .  

I f , f o r  b r i e f n e s s ,  we s e t  

t h e n  f o r  a g iven  o/p* t h e  c r i t i c a l  s h e a r i n g  s t r e s s  i s  
given b y  s e t t i n g  e q u a l  t o  zero t h e  f o l l o w i n g  de te rminan t :  

Tl 

- 1'7 
3 P* 

0 

u 1 7  
1 5  p* 

0 

. * . e  

4 L  0 
3 P* 

T, - 5 7  
5 P* 

7 . r  

0 4 z  
7 P* 

. .  

0 1 7  
21  p* 

- - -  
.... . .... 

1 7  -- 
1 5  p* 

0 

- -  1 7  
7 P" 

f 4  

I T  
9 P" 

- - _ )  

4 :. . 

0 

0 
.. , I  

. . . e  .... 
The dropping  o f  t h e  t,erms w i t h .  b 2 / n 2 r 2  and b4/n4r4  

n4r4  
b" 

i n  t h e  b r a c k e t s  a f t e r  k - I n  e q u a t i o n  ( 3 3 )  amounts 

t o  n e g l e c t i n g  t h e  t r a p e z o i d a l  shape o f  t h e  p l a t e  e lement  

t h e r e  are then  o b t a i n e d  t h e  f o l l o w i n g  s i m p l i f i e d  e q u a t i o n s  
f o r  t h e  p l a t e  s t r a i n s  and f o r  t h e  s e c t i o n  f o r c e s :  

i n  c ross  s e c t i o n .  From e q u a t i o n s  ( ~ i . ~ - ~ )  and (7,1-8 ) 
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The curvature of the plate element fa these magnitudes is 
expressed only through the term 
there remain after striking aut the portions with 
b 2  --.' the buckling tern -2 qlr wxy and -q2r'wXX in nZr2 
equation (15.,3) and. - q l p  $ Cm 

w/r.'~ Of I the load terms 

n m  (-I)~ and 
a rn na - m 

in equation (24.,), i.e., only the buckling' 
* v2ra 
I- f32 

92 b-2 ' 

terms which would remain in passing, to the flat piate. 
In the equilibrium condition there is added t o  the por -  
tions for the flat plate the radial components of the 
ring stresse-s. The system of differential equations"' . 
(15.1-3) now assumes the following f o r n ; :  

. -  

'I' 
1 - v  + - v x y + v 2  = o  uYY 2 r uxx + - 2 

1. (u ux c vy + 2 )  + k r2 b o w  - 2 qlwpxy - q2w,, = r r 
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By introducing a stress function, equations. (40.1,a) can 
be further combined into one. The equilibrium condition 
of the forces in the tangent plane to the plate element 
are now simply 

a Nxy 
a x  

= o  

These equations are exactly satisfied by the expression 
for the stress function 

1 1 1 
S S S 
- w, = Qyy, - Ny = ox,, - Nxy = - QXY 

From equations (40) there is obtained by elimination of 
the displacements u and v the relation between the 
stress function @ and the radial displacement w 

The differential equation of (41.3) assumes the form 

The system o f  differential equations (41elm3 ) or (42.1-2 ) ,  
the validity of which was proved here for a central angle 
of 45' for the case of pure shear and about 30° for the 
case .o f  pure compression, is the starting point in the in- 
vestigation of Leggett. 

IT. &VALUATION OF THE BUCKLING COliJDITION AND SETTING-UP 

03' AN APPROXIMATION FORMULA FOB THE CASE 02' PUR1 SHEAR 

In the diagonal terms o f  the buckling determinant 
(38), the longitudinal stress cjX is to be set equal t o  
to zero. Using in the expression values f o r  n up to 
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n = 2, 3 , .., etc., there are obtained from equations, (38) 
for the determination of the criticax shear stress the 
following approximation formulas: 

First approximation: 

Second approximation: 

' T  T T3 / T  \2  ,.I. 2 
1 1 -TI + -  (5) = 
52 32 T, 

(44 1 

Third approximation: 
4 

+ Tl T, T, T, = 0, , (45) 

The further approximations need not be written out since 
the critical shear stresses hardly differ ib the 
second and third approximation. In the diagonal terms Tn 
there enters the ratio of the plate width to the plate 
wave length .j3 = b/l as an unknown. The latter must be 
s o  chosen as to give the least cfOtical 'stresses. 

In figures 6 and 7 the results of the computations 

are plotted against 'G = v l x > , - -  b .&. Keeping 
' the ratio b / s  fixed, the curves show the dependence of 
the critical shear stress and the reciprocal wave length 

.. .--.on the plate curvature. The first approximation for the 
critical shear stresses gives in the entire range values 
about 5 percent too high while the second and third prac- 
tically coincide. For w = O(r = m), there is already 
obtained from the third approximation the exactly computed 
value ~ / p * . =  1.334 of Southwell and Skan (reference 8 ) .  
Figures 6 and 7 also contain the curves computed by Leggett 
for the other limiting case of a plate strip with flexur- 
ally rigid edge stiffeners (v = 0). The critical shear 
stresses lie considerably higher than in our case 0f.a 
plate strip with longitudinal stiffeners flexurally yield- 

rrr 
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ing in the circumferential direction (W = 0.). In prac- 
tical applications the edge condition wif1 lie between 
these two limiting conditions and the assumption here made 
is on t h e  safe side. 

From the consideration of equations (44) and (45)  it 
may be seen that on dropping all terms.except those with 
32 in the denominator there is again obtained the first 
approximation (43). Since the latter differs from the 
further ones by only 5 percent, the other terms in the sec- 
ond, third, etc., approximations which are obtained using 
grcatcr valufts of n in the assumed expressions should be 
very small. There is thus proved the statement made in 
section I11 that the errors made with incraasing n in 
the elimination process are insignificant in the final 
result, 

As may be seen from figure 6, %he criticnl-stress 
curve with increasing UJ approaches a straight line asymp- 
totically. The equation of this asymptote may be easily 
derived from the second approximation by introducing a 
new unknown and striking out small terms. The individual 
terms in equation (44) are the following: 
. .  

T2 = - 
32 P ( 4  + p 2 I 2  

As a new variable there is taken the ratio of the bending 

portion (1 +. f3 2 2  ) and the extensional portion w -  L 
(1 4- 82)2 

in T~ and set equal to 2'. 

(1 + p2)2 = z 4  --- P 4  
(1 + p2I2 

After eome computation, there is obtained 
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As is easily shown by the numerical computation, for a 
large value of w the m a l l  root must be taken for p. 
Neglecting small terms, there is obtained 

and substituting in equation (44) 

30 n 
1 32 26 + - 
z4 

d (7 /P* )2 From the minimum condition -- = 0, .there follows 
d ( z S )  

3 

z = 0,956 

1.045 p = -- x 

7 The product . -  8 remains f o r  large value of w constant 
P* 

and the extensional an&.bending portions in ’rl on ac- 
count of z = 0,956 are almost equal. 

From figure 6 it raag be seen that the curve of crit- 
ical stress may be replaced by’ its asymptote for 
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3; = 2.5 ,  i . e . ,  f o r  cu 40. w i t h  s u f f i c i e n t  a c c u r a c y .  
The e q u a t i o n  o f  t h e  a s y m p t o t e ’ ( 4 8 )  f o r  w P 4 0  may be  
assumed a s  t h e  approx ima t ion  fo rmula  f o r  t h e  computa t ion  
of t h e  c r i t i c a l  s h e a r  s t r e s s .  A f t e r  some c-omputation 
t h e r e  i s  o b t a i n e d  t h e  f o l l o w i n g  b u c k l i n g  f o r m u l a  

3 1 4  b E1 E 
7 =  1.56 

(1 - v 2 )  

(49) 
I 

hence w i t h  U = 0.3: > 
S - I ’  

T = 1.67’ E - /s 
b v ‘ r  

i 

c r i t i c a l  shea r  s t r e s s e s  must be  t aken  from t h e  curve  i n  
f i g u r e  t i .  

V. EXAMPLES 

The accu racy  o f  t h e  e l i m i n a t i o n  p r o c e s s  d e s c r i b e d  i n  
s e c t i o n  111 for a c e n t r a l  a n g l e  o f  450 

(,b. 4 
t a t i o n  c a r r i e d  ou t  h e r e ,  w i l l  be  t e s t e d  on some examples.  
There w i l l  f i r s t  b e  c o n s i d e r e d  a p l a t e  s t r i p  w i t h  b/s = 
50. F o r  U = 0 . 3  t h e r e  i s  o b t a i n e d  f r o m  e q u a t i o n  ( 3 6 )  

= 172.5 and f u r t h e r  f o r  s2 = 0 . 1 ,  p* T= 2.95.  ( S e e  
f i g .  -6.) From t h e  b u c k l i n g  d e t e r m i n a n t  (38) t h e  c o e f f i -  
c i e n t s  i n  t h e  e x p r e s s i o n  a r e  computed t o  be  

- = ‘j , which w a s  assumed a s  t h e  l i m i t  f o r  t h e  compu- 

C, -0.413 C, C, = - 0 . 0 5 5 6  C, C, = -0.0065 C, 

The b u c k l i n g  funict ion t h e n  assumes t h e  f o l l o w i n g  form: 

d5-L x; w = s i n .  - 0.0065 s i n  1-0.413 s i n  ‘FT 1 

C I  b L b b J  
- 

r 

n Y  I s i n  - - 0.6556 s i n  + c o s  --- A x i T T x  

‘b L b b 
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In figure 8 the corresponding buckling surface is repr 
sented by means of contour lines, In figure 9 this is 
compared with the buckling surface of a flat plate taken 
from the paper by Southwell and Skan (reference 8 ) .  From 
a comparison of %he two figures it may be seen that the 
wave length of the curved plate strip is larger and the 
folding angle made with the longitudinal axis smaller than 
for-the flat plate. 

The accuracy of the first approximations for An and 
Bn (equation (29)) depends on the ratios of the neglected 
portions in the Coefficients of A,, Bn, and Cn, to the 
remaining portions an* bn, etc., in equations (31e1-3), 
For the absolute values of the ratios in equation (ale,) 
there is obtained 

for n = 1: 0.000615 

n = 2: 0.0145 

n = 3: 0.0198 

n = 4: 0.347 

The ratios in equations (31,2) and (31.3) are, as may also 
be seen from the form of the equations, somewhat greater 
for n = 1 than for the equation (311) but. for n = 2 to 
4, smaller; Prom the computed values it may be seen that 
the first approximations for An and 'Bn for n = 1 to 
3 are sufficiently accurate. The larger error for n = 4 
is unimportant for the computation of the critical stresses 
on account of the small magnitude of the corresponding 
load terms, 

For larger values of w (i.e., for larger b / s  at 
the same central angle of 450) the equations (46 ) ,  (47 ) ,  
and (48) may b e  substituted for the values Tn, 6 ,  and 
~ / p * ,  corresponding to the g o o d  agreement of the asymp- 
tote to the second approximation with the exact ~ / p *  

curve. Since % enters as a factor in all these equa- 
tions, there is obtained from the buckling determinant (38) 
independently of the value of w ,  the foll3wing values 
for the coefficients in the expression for w: 

C, = -0.380 C, C3 = -0.0470 C, C, zz -0.00565 C, 
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From the comparison with the accurately computed coeffi- 
cients for w = 172.5, it is seen that the buckling 
shape changes only slightly in the y direction for larger 
values of w and is essentially distorted only in the 
x direction, corresponding to equation (47) for the re- 
ciprocal wave length. 

The ratios in equation (31.1) for w = 172.5 becomc 
at larger values of w and same central angles still 
smaller on account of the small change in the coefficients 
for the w expression mith decreasing s 2 / b 2 .  

+I. SUivIIviARY 

In the present paper the buckling condition for an 
infinitely long plate str.ip with constant curvature and 
simply supported longitudinal edges is set up for com- 
bined shear and longitudinal stress. Starting f r o m  the 
complete fundamental equations for the displacements a 
sinple computation process is developed for plate strips 
o f  srnall curvature (central aagle 5 4 5 O )  with the aid of 
a Ritz expression. For the case o f  p u r e  shear stress the 

buckling condition is svalaated and for 4.3 ( w  > 

40) a simple approximation formula derived. (See fig. 6 
and equation ( 4 9 ) , )  The computation results for the gen- 
eral case of combined shear and axial stresses will be 
reported on later. 

S 
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under Cia, C2n in equation (21). 
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